4 research outputs found

    Parity-violating Electron Deuteron Scattering and the Proton's Neutral Weak Axial Vector Form Factor

    Get PDF
    We report on a new measurement of the parity-violating asymmetry in quasielastic electron scattering from the deuteron at backward angles at Q2= 0.038 (GeV/c)2. This quantity provides a determination of the neutral weak axial vector form factor of the nucleon, which can potentially receive large electroweak corrections. The measured asymmetry A=-3.51 +/- 0.57(stat) +/- 0.58(sys)ppm is consistent with theoretical predictions. We also report on updated results of the previous experiment at Q2=0.091 (GeV/c)2, which are also consistent with theoretical predictions.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let

    The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles

    Full text link
    In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method

    The G0 experiment: Apparatus for parity-violating electron scattering measurements at forward and backward angles

    No full text
    In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part-per-million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cherenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed. © 2011 Elsevier B.V. All rights reserved.Articl
    corecore